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Abstract
In this study we present a numerical analysis for the self-averaging of the
longitudinal dispersion coefficient for transport in heterogeneous media. This
is done by investigating the mean-square sample-to-sample fluctuations of the
dispersion for finite times and finite numbers of modes for a random field
using analytical arguments as well as numerical simulations. We consider
transport of point-like injections in a quasi-periodic random field with a
Gaussian correlation function. In particular, we focus on the asymptotic and
pre-asymptotic behaviour of the fluctuations with the aid of a probability density
function for the dispersion, and we verify the logarithmic growth of the sample-
to-sample fluctuations as earlier reported in Eberhard (2004 J. Phys. A: Math.
Gen. 37 2549–71). We also comment on the choice of the relevant parameters
to generate quasi-periodic realizations with respect to the self-averaging of
transport in statistically homogeneous Gaussian velocity fields.

PACS numbers: 05.10.Gg, 47.55.Mh

1. Introduction

The temporal behaviour of dispersion for transport in heterogeneous media has been considered
in the literature for a long time. In this context the stochastic approach has proven successful
for predicting the behaviour of transport parameters, see [2–4, 9, 13, 21]. The stochastic
approach proposes a generic description of contaminant transport in real systems via averages
over the flow realizations [2, 3]. It assumes that the heterogeneity of the flow can be efficiently
described through random space functions. Hence, representative transport parameters are
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derived from appropriately defined averages over the ensemble of the random flow realizations.
An up-scaling of this generic process to a Gaussian process with constant coefficients, called
‘macrodispersion’, is heuristically inferred from arguments based on the central limit theorem,
see [2]. A proof for the existence of the up-scaled process in the case of purely advective
transport with a non-vanishing mean velocity was done under the assumption that the random
velocity has small fluctuations and suitable strong-mixing properties [13]. However, this proof
can be extended to advection–diffusion processes only provided that the diffusion coefficient
is of the order of the velocity variance, see [21]. It is worth to note that such an up-scaling
can only be proven for ensemble averaged concentrations and does not ensure that single
representatives of the ensemble have the same up-scaling, see [18]. The predictive value
of the ‘macrodispersion concept’ for actual realizations is still an open issue and recent
studies about this topic are in slight disagreement [12, 19]. The study to what extent
the dispersion coefficients represent the behaviour in a single realization is therefore of
significant importance. The self-averaging property of the dispersion coefficients renders the
macrodispersion coefficients being representative for actual transport realizations [1], provided
that a macrodispersive up-scaling of the mean concentration exists [18]. An important advance
has been recently reported in [7] where the sample-to-sample fluctuations of the effective
transport parameters are analysed by a novel approximation technique. It is shown in [7] that
the self-averaging behaviour can be expected for transport in Gaussian velocity fields with
finite correlation scales and small variances. This result has been reinforced by numerical
simulations of the un-approximated transport problem. The latter further indicates an ‘ergodic’
behaviour, in the sense that space-averaged coarse-grained concentrations in actual realizations
tend to the up-scaled macrodispersion solution in the mean-square limit [18].

In the present work, we continue the analysis of Eberhard [7] using analytical methods for
the probability density function of the dispersion coefficient as well as numerical simulations
with the Langevin iteration method (LIM). The numerical results given by LIM have recently
shown to agree with direct numerical simulations done with a global random walk method [17].
The novelty of the LIM approach consists in providing an explicit expression of dispersion
coefficients in given realizations of the random velocity field, approximated for small velocity
fluctuations. This approach is feasible whenever single-velocity realizations are available in
analytical form, as for instance in the case of quasi-periodic random fields. As Gaussian
fields can be approximated by quasi-periodic fields with large numbers of harmonics, it has
been shown, based on LIM computations, that for a Gaussian random field the asymptotic
value of the longitudinal dispersion coefficient is self-averaging [7]. Moreover, the approach
of Eberhard [7] also provides for the first time a numerical evidence that transport in quasi-
periodic fields with finite numbers of modes is not self-averaging. In this paper, we study the
self-averaging of the dispersion by the mean-square sample-to-sample fluctuations for finite
times and finite numbers of modes of the quasi-periodic fields. In particular, we focus on the
asymptotic and pre-asymptotic behaviour of the fluctuations with the aid of the probability
density function for the dispersion coefficient. We are able to verify the logarithmic growth
as previously reported in [7]. We also annotate the selection of the relevant parameters to
generate quasi-periodic realizations with respect to the self-averaging. These parameters are
the number of modes Np and the number of realizations R for the ensemble average. And we
show that quasi-periodic fields can be used to simulate a self-averaging behaviour of transport
in Gaussian velocity fields.

We carry out the LIM investigation on self-averaging for a typical problem of transport
in saturated aquifers where the porosity is assumed to be constant even though it may vary
weakly. The approach is based on a first-order approximation of the Darcy velocity through
quasi-periodic random fields, which has the advantage to yield explicit expressions for the
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effective coefficients in single realizations of the transport. This approximation, in the form
of the Kraichnan routine, was already successfully used in numerical investigations on large
scale behaviour of the effective coefficients in the past, see [5–7, 11, 16, 18]. We consider
a velocity field V with a constant mean U = 〈V〉, where 〈·〉 denotes the ensemble average
over the random flow realizations. The velocity fluctuations ui = Vi − Ui, i = 1, 2, 3, are
computed as a superposition of Np cosine modes,

ui(x) = |U|
√

2q0

Np

Np∑
l=1

pi(ql ) cos(ql · x + αl), (1)

where the wave vectors ql are independent normal distributed random variables with zero
mean and variance l−2

0 . The phases αl are uniformly distributed in the interval [0, 2π ], and the
functions pi(q) = δ1i −q1qi/q2, i = 1, 2, 3, are projectors which ensure the incompressibility
of the flow. For Np → ∞, (1) tends to a Gaussian velocity field with the zero mean and
isotropic Gaussian shaped correlation function ∼ exp

(−x2
/
l2
0

)
, which approximates the Darcy

flow for log-hydraulic conductivity with a variance q0 and an isotropic Gaussian correlation
with a correlation length l0, see e.g. [7].

2. Transport and dispersion in random media

We consider the transport of solutes in two- and three-space dimensions by advection–diffusion
processes. The trajectory Xi(t), i = 1, 2, 3, of a solute molecule depends on three factors: the
isotropic local dispersion with constant coefficient D0, described as a Wiener process W; the
large scale variability of the velocity field, described by a statistically homogeneous random
field V = U + u; and the initial position X0. In the following we consider only point-like
injections, and without loss of generality, we assume U = Ue1 and X0 = 0.

For a given realization of the velocity field, the transport is described by the integral form
of the Langevin equation:

Xi(t) = Uδi1t +
∫ t

0
dt ′ ui(X(t ′)) +

∫ t

0
dWi(t

′). (2)

The Wiener process Wi = ∫ t

0 dWi(t
′) has the properties 〈W 〉w = 0 and 〈[W(t)]2〉w = 2D0t ,

where the angular brackets 〈·〉w denote the average over the realizations of the Wiener process.
In the case of constant local dispersion coefficient D0, the integral representation of the solution
of the Langevin equation corresponds to the advection–diffusion equation for the normalized
concentration, see [8],

∂tc + V · ∇c = D0∇2c.

The dispersion of the solute can be conveniently described by the variance of the
displacements of the solute molecules, i.e. the second-order central moment of the actual
concentration in a given realization of the velocity field. The diagonal components of the
second moment tensor are given by

Sii(t) = 〈[xi(t) − 〈xi(t)〉w]2〉w. (3)

Since we analyse only the longitudinal dispersion in the present study, we drop the subscripts
hereafter. The dispersion can easily be described by a dispersion coefficient defined by half of
the rate of the increase of the second moment, i.e., S(t)/(2t). For t → 0, S(t) yields the local
variance around the initial condition, and the dispersion coefficient above defines the local
dispersion coefficient D0 in (2) (see e.g. [8]). It also defines an effective diffusion coefficient
if its limit is finite for t → ∞ [17].
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The most common definition of the dispersion coefficient is given by the time derivative
of the second moment S(t),

D(t) = 1

2

dS(t)

dt
. (4)

Definition (4) for the dispersion coefficient is preferred in analytical approaches [5–7] because
it reduces the number of time quadratures in the resulting quantity. However, at finite times,
when D(t) does not play the role of a diffusion coefficient in a local equation of transport
[17], the dispersion coefficients can be used merely as equivalent representations of the actual
dispersion described by the moments (3). Obviously, when the effective coefficients can be
defined in the large time limit, D(t) = (1/2)dS/dt coincides with its time average S/(2t).
We refer to [17] for a more detailed discussion of the two definitions of dispersion.

In the stochastic approach for the transport problem, the mean value of the dispersion
coefficient (4) is estimated by the average over the ensemble of the velocity realizations, i.e.,
〈D(t)〉. The mean-square sample-to-sample fluctuations δD(t) of the coefficients D(t) are
defined by

(δD(t))2 = 〈(D(t))2〉 − 〈D(t)〉2. (5)

The same definitions will be used throughout the paper for the mean and fluctuations of the
time average S/(2t) of the coefficient D.

2.1. Approximation method

The Langevin iteration approximation for (2) consists of the first iteration of the Langevin
equation about the ‘unperturbated’ problem for dispersion in the mean flow U, see [7]:

Xi(t) = Uδi1t +
∫ t

0
dt ′ ui

[
Uδi1t

′ +
∫ t ′

0
dWi(t

′′)

]
+

∫ t

0
dWi(t

′). (6)

Numerical arguments indicate that (6) yields asymptotic approximations in the velocity
fluctuations which are equivalent to those of a large class of iterative methods [17]. The
evaluation and direct comparison with accurate numerical simulations, also done in [17], show
that the LIM based on (6) yields very good approximations at times larger than the dispersion
time scale l2

0

/
D0. Hence the numerical computation of these expressions, followed by the

ensemble average, allows us to evaluate asymptotically the sample-to-sample fluctuations of
the effective coefficients.

For the numerical computations in sections 3 and 4, we consider therefore the
explicit LIM analytical expressions for D(t) in single realizations of the transport given in
appendix B.1 of [7]. Using equations (1), the latter can easily be computed numerically for
the two- and three-dimensional case (as done in [17, 7]).

2.2. Asymptotic dispersion coefficient

We also consider the fluctuations of the longitudinal dispersion coefficient for t → ∞.
The result given by the Langevin iteration method and the perturbation theory approach for
D (t → ∞) (see equation (16) in [7]) yields

D∞ = D0 +
q0U

2

Np

∑
j

∗
p1(q(j))2 1

/
τ

(j)

D(
1
/
τ

(j)

D

)2
+

(
1
/
τ

(j)
u

)2 , (7)

where the wave vectors q(j) define the realization for Np cosine modes. The summation

is defined by
∑∗

j := ∑Np

j=1 for q(j) 	= 0, and the time scales by τ
(j)
u := 1

/(
Uq

(j)

1

)
and
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τ
(j)

D := 1
/(

D0q(j)2)
. It is evident that the value of D∞, equation (7), explicitly depends

on the given realization. As the ensemble mean of D∞ must be independent of the single
realizations, the sample-to-sample fluctuations do not vanish for finite numbers of Np. The
ensemble average of the asymptotic dispersion D∞ is given by (see appendix B.3 in [7])

〈D∞〉
= D0 + q0Ul0

√
π

2

(
1 − 8ε4 exp

(
1

2ε2

)
erfc

(
1√
2ε

)
+ 8ε4 − 16ε3

√
2π

+ 4ε2 − 16ε

3
√

2π

)
,

where ε = τu/τD = D0/Ul0. It holds true that 〈D∞〉 = limt→∞〈D(t)〉.

3. Probability density function of D

To analyse the asymptotic behaviour of (δD∞)2 for Np < ∞ theoretically, we investigate the
probability density function of D denoted by PD(D).

To define the probability density function the dispersion of each realization of the ensemble
is considered as a random variable D(t) for fixed times t. With the assumption that the
corresponding probability density function PD(D) is continuous and normalized, the moments
are then defined by

〈Dn〉 =
∫ ∞

−∞
dD PD(D)Dn, (8)

and the probability function is defined according to [20] by

PD(D; t) = 〈δ(D − D(t))〉, (9)

where the average 〈·〉 is to be taken with respect to the realizations of the quasi-periodic
ensemble of aquifer realizations, and δ(·) denotes Dirac’s delta function. To derive PD(D)

the value of D(t) is calculated by the approximation for the dispersion coefficient given by
the LIM. However, an explicit result for PD(D) can be derived only in the long-time regime
for three dimensions. In the following we analyse the asymptotic behaviour of PD(D) in the
limit t → ∞. Using the asymptotic dispersion D∞ given in (7) we obtain

PD(D) ≡ 0 for D < D0, (10)

since all emerging corrections to D0 are positive. For D � D0, PD(D) can be rewritten
according to (7) and (9) as

PD(D) =
〈
δ

(
D − D0 − q0U

2

Np

∑
j

∗
p1(q(j))2 1

/
τ

(j)

D(
1
/
τ

(j)

D

)2
+

(
1
/
τ

(j)
u

)2

)〉

=
∫

d3q(1)Pq(q(1)) · · ·
∫

d3q(N)Pq(q(N))

× δ

(
D − D0 − q0U

2

Np

∑
j

∗
p1(q(j))2 D0q(j)2(

D0q(j)2)2
+

(
Uq

(j)

1

)2

)
, (11)

where Pq(q) is given by Pq(q) = (2π)−d/2ld0 exp
(−q2l2

0

/
2
)
. As shown in appendix A we

obtain for the asymptotic result of PD(D) for D∞

PD(D) ∼ q2
0U 2l2

0

ε
√

2πN2
p

D−3, (12)

which is of the order O
(
q2

0

)
. Due to the definition of the second moment 〈D2〉, see (8),

the result for PD(D) implies PD(D)D2 ∼ D−1. It follows that the integral 〈(D∞)2〉 =
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Figure 1. Probability density function PD(D) for D = (1/2)dS/dt from the result of the LIM (left)
and for S/(2t) (right). The function is computed by 108 realizations (left) and 1024 realizations
(right), respectively, for Np = 64, q0 = 0.1, and ε = 0.01, for different times t. The ensemble
means are given by 〈D〉/D0 = 4.2 and 〈S/(2t)〉/D0 = 2.6 for t = 10τ, 〈D〉/D0 = 10.8 and
〈S/(2t)〉/D0 = 8.2 for t = 100τ , and 〈D〉/D0 = 13.0 and 〈S/(2t)〉/D0 = 11.9 for t = 1000τ .

∫
dD PD(D)D2 ∼ ∫

dD D−1, that is the second moment, yields a logarithmic dependence of
the fluctuations on D, i.e., the fluctuations behave as ∼ ln(D). In contrast, the ensemble average
〈D∞〉 exists for PD(D) ∼ D−3. Hence, the results show that in the given approximation the
asymptotic sample-to-sample fluctuations (δD∞)2 = 〈(D∞)2〉 − 〈D∞〉2 do not exist. The
asymptotic behaviour given by PD(D)D2 ∼ D−1 for the integral of 〈(D∞)2〉 implies a
logarithmic growth of the fluctuations which agrees with the results of [7].

3.1. Numerical computation of PD(D)

Next we compute PD(D) numerically by calculating the dispersion coefficient D(t) for up to
108 realizations of the random quasi-periodic field for three dimensions. In addition to PD(D)

for the asymptotic dispersion (12), PD(D) is also computed numerically for finite times t. The
numerical results for the asymptotic temporal behaviour of the probability density function
for D = D∞ are shown in appendix B.

The longitudinal dispersion is given by the result of the Langevin iteration method. This
means that we compute D(t) for a set of fixed time points using the explicit results given by
the LIM [7], see section 2.1. PD(D) is numerically calculated as a discrete probability density
function using dispersion bins of length 10−2. Each bin adds up the number of values D
falling into the corresponding bin. Hence, PD(D) is the counted number of each bin divided
by the number of realizations. The discrete functions are computed for fields with variance
q0 = 0.1, U = 1m/day, correlation length l0 = 1m, and local diffusion D0 = 0.01 m2/day
for different times t and numbers Np. Hereafter the symbol m defines meters and τ = l0/U

the advective time scale.
Figures 1–3 depict the probability functions for times t = 10τ, t = 100τ , and t = 1000τ .

The number of modes is fixed to Np = 64, 640 and Np = 6400, respectively. On the left-hand
side of figures 1–3, PD(D) is calculated for the dispersion coefficient D(t) = (1/2) dS/dt ,
and on the right-hand side for S/(2t).

As a result of the numerical computation on PD(D) shown in figures 1 and 2, it follows
that the larger the time the higher the probability for the large values of D � 〈D〉. Fitting
the tail of the numerical results for D(t) = (1/2) dS(t)/dt to a function proportional to D−α

using a nonlinear least-squares Marquardt–Levenberg algorithm [15] yields for Np = 64
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Figure 2. Probability density function PD(D) for D = (1/2)dS/dt from the result of the LIM (left)
and for S/(2t) (right). The function is computed by 105 realizations (left) and 1024 realizations
(right) for Np = 640, q0 = 0.1, and ε = 0.01, for different times t. The ensemble means are given
by 〈D〉/D0 = 4.2 and 〈S/(2t)〉/D0 = 2.6 for t = 10τ, 〈D〉/D0 = 10.7 and 〈S/(2t)〉/D0 = 8.1
for t = 100τ , and 〈D〉/D0 = 13.0 and 〈S/(2t)〉/D0 = 12.0 for t = 1000τ .
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Figure 3. Probability density function PD(D) for D = (1/2)dS/dt from the result of the LIM
(left) and for S/(2t) (right). The function is computed by 104 realizations (left) and 183 realizations
(right) for Np = 6400, q0 = 0.1, and ε = 0.01, for different times t. The ensemble means are given
by 〈D〉/D0 = 4.2 and 〈S/(2t)〉/D0 = 2.6 for t = 10τ, 〈D〉/D0 = 10.6 and 〈S/(2t)〉/D0 = 8.2
for t = 100τ , and 〈D〉/D0 = 12.9 and 〈S/(2t)〉/D0 = 12.0 for t = 1000τ .

α = 3.13 ± 0.50 for t = 10τ (D/D0 � 15)

α = 3.01 ± 0.20 for t = 100τ (D/D0 � 50)

α = 3.00 ± 0.13 for t = 1000τ (D/D0 � 205),

for Np = 640

α = 3.01 ± 0.20 for t = 10τ (D/D0 � 7)

α = 3.05 ± 0.16 for t = 100τ (D/D0 � 31)

α = 2.86 ± 0.16 for t = 1000τ (D/D0 � 13),

and for Np = 6400

α = 3.12 ± 0.66 for t = 10τ (D/D0 � 8)

α = 3.02 ± 0.47 for t = 100τ (D/D0 � 26)

α = 2.89 ± 0.26 for t = 1000τ (D/D0 � 11).
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These numerical results fully agree with the analytical result (12). Further it is evident that
the probability density functions PD as a function of time t increase with growing time for the
large values of D, that is, the fluctuations of D(t) around the mean increase with growing time.
This result fully agrees with the fact that the sample-to-sample fluctuations do not converge
for t → ∞. For finite times, however, the fluctuations around the mean are finite and the
sample-to-sample fluctuations 〈(D(t) − 〈D(t)〉)2〉 cannot be divergent.

In addition, we would like to round off the numerical computation of PD(D) by noting
the values for the asymptotic behaviour of the probability density function computed for the
dispersion coefficient S/(2t). Due to the small number of realizations for the computation of
PD(D) using D = S/(2t) the numerical results for the asymptotic behaviour of the probability
density functions show large deviations (see right plots in figures 1–3). Fitting the tail of the
numerical results to a function proportional to D−α for D = S/(2t) yields for Np = 64

α = 4.01 ± 0.41 for t = 10τ (D/D0 � 6)

α = 3.09 ± 0.23 for t = 100τ (D/D0 � 15)

α = 2.75 ± 0.20 for t = 1000τ (D/D0 � 13),

for Np = 640

α = 4.03 ± 0.61 for t = 10τ (D/D0 � 7)

α = 4.14 ± 0.30 for t = 100τ (D/D0 � 15)

α = 4.34 ± 1.63 for t = 1000τ (D/D0 � 21),

and for Np = 6400

α = 3.71 ± 0.72 for t = 10τ (D/D0 � 4)

α = 3.38 ± 0.48 for t = 100τ (D/D0 � 15)

α = 3.87 ± 0.49 for t = 1000τ (D/D0 � 10).

4. Numerical results for the temporal behaviour of the mean and sample-to-sample
fluctuations

We investigate the self-averaging of the longitudinal dispersion coefficient. The latter is
addressed by computing the temporal sample-to-sample fluctuations. The Langevin iteration
method yields an explicit result for the longitudinal coefficient D(t) defined by (4), see
equation (B1) in [7]. The ensemble mean is then computed by numerical averaging over
the explicit result for the different numbers of realizations R and different numbers of modes
Np, and the sample-to-sample fluctuations of the dispersion coefficients D are computed
by (5).

For the numerical computations we consider divergence-free velocity fields given by
Darcy’s law for normal log-hydraulic conductivity in two and three dimensions. The fields are
Gaussian correlated using the parameters as given in section 3.1, and in each realization we
consider an isotropic local diffusion D0 = 0.01m2/day. The fields are numerically generated
(in first-order approximation in q

1/2
0 ) with the aid of (1) as done in [5–7, 11, 16]. To assess

the reliability of the procedure, the simulations are repeated for increasing numbers Np of
modes used in the Kraichnan routine (Np = 64, 640, and Np = 6400). In [18], it is shown
that the so generated velocity fields fulfill the requirements of the limit theorem given in [13].
The numerical computation of the longitudinal dispersion coefficient, equation (B1) in [7], is
conducted for dimensionless times t/τ = Ut/l0 corresponding to 3900 correlation lengths.
Ensembles of up to 1024 realizations of the transport simulations are computed for each of
the three Np values.
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Figure 4. The relative sample-to-sample fluctuations of the longitudinal dispersion coefficients
computed by the Langevin iteration method for fixed R = 256, and Np = 64, 640 and
Np = 6400. The dispersion coefficients are computed by (1/2) dS(t)/dt (left) and S(t)/(2t)

(right), respectively. For the three-dimensional case and Np = 6400, the number of realizations is
R = 183.
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Figure 5. The relative sample-to-sample fluctuations of the longitudinal dispersion coefficients
for increasing R and fixed Np = 64. D(t) is computed by (1/2) dS(t)/dt for the left plot and by
S(t)/(2t) for the right plot.

4.1. Self-averaging behaviour of the effective coefficients

In figures 4 and 5, the relative sample-to-sample fluctuations δD(t)/〈D(t)〉 are computed
and compared for the different values of Np and R. Figure 4 shows the sample-to-sample
fluctuations of the longitudinal dispersion coefficients computed by the Langevin iteration
method for fixed R = 256, and increasing Np. The dispersion coefficients are computed by
D(t) = (1/2) dS/dt (left plot in figure 4) and S(t)/(2t) (right plot in figure 4), respectively.
The plots show the dependence of the fluctuations on Np for two- and three-space dimensions.
Figure 5 depicts the sample-to-sample fluctuations of the longitudinal dispersion coefficients
for increasing the number of realizations R and fixed Np = 64. D is computed by D(t), (4),
for the left plot, and by S(t)/(2t) for the right plot. As shown in the plots of figure 5, the
increase of R over hundreds of realizations does not enhance the self-averaging behaviour of
D and S/(2t).
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Figure 6. The mean longitudinal dispersion for fixed R = 256 and Np = 64, 640 and Np = 6400
(left), and for Np = 64 fixed and increasing R (right). The graphs show the dependence on Np

and R, respectively, for two- and three-spatial dimensions. For the three-dimensional case and
Np = 6400, the number of realizations is fixed to R = 183.

For Np = 64 and Np = 640, the numerical results of the LIM exhibit a slow increase of
the fluctuations at large times for two and three spatial dimensions, as shown in figure 4 (right).
However, for Np = 6400, the fluctuations (for both the two- and three-dimensional cases)
drop below 20% at about 4000 advection time scales τ , see figure 4. This behaviour indicates
that the longitudinal dispersion coefficient for transport in Gaussian fields, approximated by
(1) using large numbers of modes Np, tends to the ensemble average in the mean-square limit
for t → ∞. The numerical results in figure 4 also show that the larger the simulation time
the larger the Np to capture the self-averaging property, i.e., the sample-to-sample fluctuations
decrease with growing simulation time. Further, it is obvious from figure 4 (right) that transport
in three dimensions exhibits better self-averaging properties than in two-spatial dimensions.
We would like to remark that the dispersion coefficient D(t) is more noisy than the time average
S(t)/(2t). This can clearly be seen by the different percentage scale of the fluctuations in the
plots of figures 4 and 5 (see also [17]).

For the mean longitudinal coefficient 〈D(t)〉, however, the plots in figure 6 show that
a few hundred realizations are sufficient for a good result of the ensemble coefficient.
Figure 6 displays the mean longitudinal dispersion 〈S〉, normalized by the local dispersion
2tD0, for fixed R = 256 and increasing Np on the left, and for Np = 64 and increasing R
on the right. The graphs therefore display the dependence of the mean dispersion coefficient
〈S(t)/(2t)〉 on Np and R, respectively, for two and three dimensions. These numerical results
indicate that the means are very robust against variations in the number of modes Np of the
underlying random field. The results also show that the difference in the transport behaviour
is significant for two- and three-space dimensions.

The results presented in figure 6 indicate that the use of the Kraichnan routine is reasonable
for simulating diffusive transport in groundwater flow governed by Darcy’s law. The routine
ensures the evolution of the ensemble averaged process towards the up-scaled macrodispersion
process. Further, figures 4 and 5 bring a numerical evidence for the self-averaging behaviour
of transport in the Darcy flows when the latter are approximated by quasi-periodic random
fields generated with the Kraichnan routine for Np = 6400 and hundreds of realizations.

As a result, the representation (1) of the groundwater flow through quasi-periodic random
fields approximates the self-averaging behaviour of the effective coefficients if the number
of periods is large enough (Np = 6400 for a simulation time of 1000τ ). The fluctuations’
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magnitude does not depend significantly on the number of realizations of the velocity field
as shown by figure 5. Figure 4 also indicates that the fluctuations for Gaussian fields are
well reproduced when using quasi-periodic fields with Np of the order of the total simulation
time since the fluctuations are the same at time 10τ for Np � 64, at 100τ for Np � 640,
and at time 1000τ for Np � 6400. Further, for all Np values the logarithmic growth begins
always after the mentioned times. According to these numerical results we propose for an
optimal choice of the relevant parameters the values Np � 6400 and R ≈ 250 for about
1000τ .

5. Conclusions

We present a numerical study for the self-averaging of the longitudinal dispersion coefficient
for transport in a quasi-periodic random medium. To this end we investigate the sample-
to-sample fluctuations of the dispersion for finite times and finite numbers of modes for the
random field. We study the probability density function as well as the fluctuations numerically
using the Langevin iteration method. Further, we investigate conditions for reliable simulations
of the self-averaging behaviour using the Kraichnan routine.

We focus on the pre-asymptotic and asymptotic behaviour of the fluctuations with the aid
of the probability density PD(D). The analytical result for PD(D) ∼ D−3 implies that the
ensemble average 〈D∞〉 is finite and that the fluctuations 〈(D∞)2〉 − 〈D∞〉2 do not converge.
This fact results from the integral

∫
D2PD(D) ∼ ln D, i.e., the fluctuations of the asymptotic

dispersion D∞ increase logarithmically with the dispersion D and independently of time t.
This result verifies the logarithmic growth of the sample-to-sample fluctuations as reported
in [7]. We show that the numerical result for the asymptotic probability density also agrees
with the analytical result and that the probability to get large dispersion values increases with
growing time t. So, transport in quasi-periodic velocity fields with a finite number of modes
Np is not self-averaging.

For large numbers of modes Np the Kraichnan routine (1) approximates the Gaussian
random fields where transport is self-averaging, see [7, 13, 18]. Accordingly our numerical
simulations of the sample-to-sample fluctuations exhibit the self-averaging behaviour of
transport in quasi-periodic random fields for very large numbers of modes (Np = 6400).
The simulations also indicate that the fluctuations and the self-averaging behaviour of D do
not depend on the number of realizations R of the velocity field. For a given simulation
period, the fluctuations are insensitive to the number of realizations R, provided that R is
at least a few hundred, but depend strongly on the number of modes Np. To simulate
transport in Gaussian fields we find that Np needs to be as large as the total simulation
time or larger. In particular, for times up to 1000τ a good choice is Np � 6400 and
about R ≈ 250. So, despite the logarithmic increase of the fluctuations of the dispersion
coefficient, quasi-periodic fields can be used to simulate self-averaging behaviour of transport
in Gaussian velocity fields for moderate numbers of realizations and large numbers of periodic
modes.

One of the prospective areas of application for the presented theory is the characterizing
and analysing of porous disordered media. In that field sophisticated ideas of e.g. percolation
and fractal geometry have proven useful in explaining the features of the transport properties
of single flow for a long time, see e.g. [10, 14]. Self-averaging properties as studied here may
potentially round off the characterization of the transport properties of random media (see also
e.g. [3, 9]).



608 J P Eberhard et al

Acknowledgments

NS gratefully acknowledges the financial support of Deutsche Forschungsgemeinschaft (DFG
grant SU 415/1-1). The work of CV is a contribution to the ‘Interdisciplinary Programme
for the Prevention of the Major Risk Phenomena at National Level’ of the Romanian
Academy.

Appendix A. Explicit result for PD(D)

To calculate the probability density function for D → ∞ we start with equation (11) and
consider the case Np = 1 first. We obtain for PD(D), using Pq(q) from section 2.1 of
Eberhard [7],

PD(D) = l3
0√

2π
3

∫
d3q e− 1

2 q2l2
0 δ

(
D̃ − c

p2
1(q)q2

q4 + q2
1ε2

)
,

where we use D̃ := D − D0 and c := U 2q0/D0. Introducing spherical polar coordinates and
scaling the radial variable by D̃, we get

PD(D) = 2
l2
0√

2π
3

1
√

D̃
5

∫ 1

0
dz

∫ ∞

0
dk k2 e− k2

2D̃ δ

(
1 − c(1 − z2)2

k2 + D̃z2ε2

)
.

Performing the integration using Dirac’s delta function with restrictions to the integration
limits, the probability function yields

PD(D) = l2
0√

2π
3

1
√

D̃
5

∫ a(D̃)

0
dz

√
c(1 − z2)2 − D̃z2ε2

× exp

(
− 1

2D̃
c(1 − z2)2 + z2ε2/2

)
(1 − z2)2c, (A.1)

where

a(D̃) =
√

1

2c

(
2c + ε2D̃ −

√
4ε2D̃c + ε4D̃2

)
.

With the aid of the mean value theorem we obtain for (A.1) passing to the limit D → ∞

PD(D) = 1√
2π

l2
0
c2

ε
D−3 = U 2q2

0 l2
0

ε
√

2π
D−3.

For a finite number of modes Np > 1 the calculus yields analogous to the case Np = 1 then

PD(D) = U 2q2
0 l2

0

ε
√

2πN2
p

D−3.

This result is of the order O
(
q2

0

)
.

Appendix B. Numerical computation of the asymptotic temporal behaviour of PD(D)

We complete the analysis for PD(D) for D = D∞ of section 3 showing numerical results
for the asymptotic behaviour of the probability density distribution. Therefore, PD(D) is
numerically computed, using (7) for D and dispersion bins of length 10−2 as described in
section 3.1, for t → ∞ and 109 realizations of the random quasi-periodic field.
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Figure B1. Probability density function PD(D) for D∞ from the result of the LIM. The function
is computed by 109 realizations for Np = 64 and Np = 640, and for 108 realizations for
Np = 6400, q0 = 0.1, and ε = 0.01 (D0 = 0.01m2/day).

Figure B1 depicts the probability function for t → ∞ and Np = 64, 640 and Np = 6400.
Fitting the tail of the numerical results to a function proportional to D−α using a nonlinear
least-squares Marquardt–Levenberg algorithm [15] yields

α = 3.06 ± 0.03 for Np = 64 (D/D0 � 600)

α = 3.01 ± 0.02 for Np = 640 (D/D0 � 170)

α = 2.96 ± 0.03 for Np = 6400 (D/D0 � 20).

These numerical results agree with the analytical result (11) and show that the sample-to-
sample fluctuations do not converge for t → ∞. In particular, the asymptotic values of
PD(D) are the smaller the larger Np for fixed parameters q0 and ε.
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